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Abstract— As the scale of distributed training increases,
it brings huge communication overhead in clusters. Some works
try to reduce the communication cost through gradient com-
pression or communication scheduling. However, these methods
either downgrade the training accuracy or do not reduce the
total transmission amount. One promising approach, called in-
network aggregation, is proposed to mitigate the bandwidth
bottleneck in clusters by aggregating gradients in programmable
hardware (e.g., Intel Tofino switches). However, existing solu-
tions mainly implement in-network aggregation through fixed
(or default) routing paths, resulting in load imbalancing and
long communication time. To deal with this issue, we propose
GRID, the first-of-its-kind work on Gradient Routing with In-
network Aggregation for Distributed Training. In the control
plane, we present an efficient gradient routing algorithm based
on randomized rounding and formally analyze the approxi-
mation performance. In the data plane, we realize in-network
aggregation by carefully designing the logic of workers and
programmable switches. We implement GRID and evaluate its
performance on a small-scale testbed consisting of 3 Intel Tofino
switches and 9 commodity servers. With a combination of testbed
experiments and large-scale simulations, we show that GRID can
reduce the communication time by 38.4%–60.1% and speed up
distributed training by 17.4%–52.7% compared with state-of-
the-art solutions.

Index Terms— In-network aggregation, gradient routing, dis-
tributed training, datacenter network, programmable network.

I. INTRODUCTION

AS THE cornerstone of large-scale machine learning (ML)
applications, distributed training (DT) is widely used

in various fields (e.g., computer vision [1], natural language
processing [2] and recommender system [3]). In distributed
training, compute nodes iteratively train large ML models
for better performance (e.g., higher classification accuracy).
There are two kinds of compute nodes: workers and the
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parameter server (PS). In each iteration, workers perform
gradient computation locally and send gradients to the PS.
On receiving gradients from all the workers, the PS performs
global aggregation and sends the results back to workers.
As the scale of models and datasets grows, gradient aggre-
gation requires massive communication resources, incurring
performance bottleneck in practice [4], [5], [6], [7]. According
to [7], for a DT task training DeepLight on 100Gbps links,
79% of the training time is occupied for communication.

To resolve this communication bottleneck, existing works
often focus on communication scheduling [8], [9], [10], [11],
[12] or gradient compression [13], [14], [15], [16]. Communi-
cation scheduling increases the overlap between computation
and network transmission via fine-grained gradient transmis-
sion (e.g., sub-models instead of the whole model). In this way,
workers can reduce idle waiting time in each iteration and fully
utilize network bandwidth. For example, ByteScheduler [10]
accelerates distributed training by maximizing the overlap
of gradient transmission and computation through Bayesian
optimization. Though communication scheduling improves
communication efficiency, it does not directly reduce the total
transmission amount and may still encounter the communi-
cation bottleneck, especially on the PS side. Gradient com-
pression can avoid the bandwidth bottleneck by reducing the
volume of exchanged data. For example, the authors [6] exploit
the sparsity of gradients to maximize effective bandwidth
usage by sending only non-zero data blocks. But gradient
compression faces the problem of degrading training accuracy.

Nowadays, programmable hardwares (e.g., smart NICs [17],
[18] and programmable switches [19]) provide the ability of
computation. As a result, in-network aggregation has been pro-
posed [5], [7], [20], [21] for mitigating the communication bot-
tleneck of distributed training in clusters. Specifically, we can
offload parts of gradient aggregation tasks into programmable
hardware to reduce the amount of forwarded traffic. After
a programmable device aggregates multiple gradients, only
the aggregated gradient is transmitted in the network. For
example, SwitchML [7] uses a P4-based programmable switch
for aggregating the gradients of workers inside a rack to
minimize the communication cost of a single rack. ATP [5]
provides a protocol to support in-network aggregation in multi-
tenant clouds. However, the above works mainly focus on effi-
ciently realizing the aggregation operations in programmable
switches, neglecting the question of how to choose efficient
gradient routing (i.e., where to perform in-network aggre-
gation)? If we implement in-network aggregation with fixed
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(or default) routing paths, the traffic load distribution may be
imbalanced, and the in-network aggregation capability cannot
be fully utilized, leading to long communication time (see
Section VI). Thus, it is necessary to design proper gradient
routing for in-network aggregation.

However, performing gradient routing with in-network
aggregation is non-trivial. On the one hand, distributed training
tasks will face multi-dimensional resource constraints, such as
switch processing capacity and link bandwidth. Moreover, the
in-network aggregation will change the total amount of for-
warded gradients, making existing routing methods [22], [23]
inefficient. Therefore, designing an efficient gradient routing
scheme with in-network aggregation is challenging. On the
other hand, with limited in-memory size on programmable
switches, it is expected to aggregate the synchronous gra-
dients. However, due to network dynamics, gradient packets
may arrive at programmable switches asynchronously, which
should store a large number of intermediate results and
exhaust the memory of programmable switches, decreasing
the in-network aggregation throughput. Thus, it is necessary
to design a rate synchronization mechanism to ensure that
the gradients of multiple workers synchronously arrive at the
switch for aggregation, which is also difficult. To handle these
challenges, we design and implement GRID, which considers
gradient routing with in-network aggregation in the context of
clusters. The main contributions of this paper are as follows:

1) We propose GRID, a gradient routing framework for in-
network aggregation, consisting of the control plane and
the data plane, to mitigate the communication bottleneck
and speed up the distributed training tasks.

2) We give a thorough control plane design and propose
a randomized rounding based algorithm to maximize
the gradient sending rate of workers with resource
constraints. Moreover, we design and implement the data
plane for workers and programmable switches, trying to
synchronize the sending rate of workers.

3) We conduct a small-scale testbed based on Intel Tofino
switches and large-scale simulation based on real-world
network topologies [24], [25]. The experimental and
simulation results show that, given the same number of
training iterations, GRID can reduce the communication
time by 38.4%-60.1% and speed up distributed train-
ing by 17.4%-52.7% compared with the state-of-the-art
solutions.

The rest of this paper is organized as follows. In Section II,
we summarize the state-of-art solutions to mitigate the com-
munication bottleneck of distributed training. Section III
presents a motivating example and overview of GRID.
In Section IV, we illustrate the control plane design of GRID.
The experimental and simulation results are presented in
Section VI. We conclude this paper in Section VII.

II. RELATED WORK

This section first introduces the situation of distributed
training. Then, we illustrate how to speed up distributed
training by communication scheduling. At last, we present how

to mitigate the communication bottleneck through in-network
aggregation.

A. Distributed Training

A deep neural network (DNN) model consists of multiple
network layers, each of which contains a large number of
parameters. Training a DNN model requires hundreds of itera-
tions over the dataset to achieve convergence [26]. In terms of
the parallelism schemes, the distributed model training can be
categorized into two main types: model parallelism and data
parallelism [27]. This paper focuses on the data parallelism
distributed model training, which splits the whole dataset
into multiple compute nodes. In each iteration, each compute
node independently trains the model on its partition of the
dataset to generate the gradient. There are lots of algorithms
for gradient calculation such as stochastic gradient descent
(SGD) and its variants [28], [29], [30], [31], [32]. We take
SGD as an example. Each compute node calculates gradient
g = ▽f(wt), where ▽ denotes vector differential operator
and f(wt) denotes the value of loss function related to model
wt in epoch t. Subsequently, compute nodes communicate
with other nodes to update the global model parameters
(i.e., gradient aggregation) [33], [34], [35], [36], [37], [38].
This phase can be done asynchronously or synchronously.
The former case mitigates the time of communicating at the
cost of non-converging. The latter case can be acted as a
synchronization barrier for convergence guarantees. For exam-
ple, in synchronous SGD (SSGD) [34], the PS receives the
gradients of workers and performs aggregation by calculating
1
N

∑N
n=1 gn

t , where N is the number of workers and gn
t is the

gradient of worker n in epoch t. In this paper, we consider
the synchronization updates.

Parameter Server (PS) [39] and AllReduce [40] are two
widely-adopted gradient aggregation schemes. In PS, there
are two kinds of compute nodes: workers and parameter
servers. Workers generate and push gradients to parameter
servers. Afterward, parameter servers aggregate all the gra-
dients and update the model parameters. At last, workers
pull the updated results from parameter servers for the next
training iteration. AllReduce uses collective communication
operations to perform gradient aggregation. We take Ring-
AllReduce [41], which is common in practice, as an example.
In Ring-AllReduce, all compute nodes are workers and form
a ring topology [42]. Each worker sends a partition of the
gradient to its successor and receives another partition of
the gradient from its predecessor. Recent studies have shown
that the bottleneck in distributed model training is shifting
from computing to communication [43]. To deal with this
issue, communication scheduling and in-network aggregation
are proposed to utilize the network bandwidth efficiently and
reduce the traffic amount, respectively.

B. Communication Scheduling

Some works try to pipeline computing and commu-
nication phase of training, ranging from designing the
high-performance traffic scheduler [8], [10], [12], [44] to
optimizing collective communication operations [11], [45],
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Fig. 1. A distributed training task containing 1 PS, 8 workers (i.e., W1-W8), and 3 programmable switches (i.e., S1-S3). The solid arrows represent the
aggregated gradients, and the dotted arrows represent the non-aggregated ones. For simplicity, we omit the intra-rack transmission arrows. Let load/capacity
represent the ratio of usage and capacity of links and programmable switches. The left plot shows the network workload of Geryon, which has a minimum
gradient sending rate of 1 Gbps. The middle plot shows the network workload of ATP, which has a minimum gradient sending rate of 2.43 Gbps. The right
plot shows the network workload of GRID, which has a minimum gradient sending rate of 3 Gbps.

[46], for accelerating the distributed training. For instance,
the authors in [11] present BlueConnect, an efficient com-
munication library optimized for GPU-based platforms, which
decomposes a single all-reduce operation into numerous paral-
lelizable operations to exploit the trade-off between communi-
cation time and bandwidth usage. Work [12] presents a traffic
scheduler named Geryon, which determines the scheduling
scheme for flows according to their priorities to maximize the
utilization of bandwidth resources. However, these methods
accelerate distributed training by overlapping the timing of
computation and communication, while not directly reducing
the amount of transmitted traffic. Therefore, these methods
don’t directly solve the problem of bandwidth exhaustion.

C. In-Network Aggregation

The idea of in-network aggregation begins at wireless
networks [47], [48] and now attracts researchers to adopt
in-network aggregation in clusters. Specifically, in-network
aggregation offloads part of gradients aggregated in forwarding
devices to reduce the amount of transferred data, alleviating
the communication bottleneck.

Since in-network aggregation utilizes forwarding devices
to aggregate gradients, it has the potential to co-exist with
other methods performed in end hosts, e.g., communication
scheduling or gradient quantization [49], to further mitigate the
communication bottleneck and accelerate distributed training.

There have been a lot of works implementing in-network
aggregation in clusters with servers [43], [50], [51] or
programmable switches [5], [7], [20], [21]. For example,
NetAgg [50] uses dedicated servers connected with switches
to perform in-network aggregation. However, server-based
in-network aggregation incurs additional bandwidth costs
and has limited scalability. With the rapid development of
programmable switches (e.g., P4-based [52], [53], FPGA-
based [54]), performing in-network aggregation with pro-
grammable switches is becoming popular. For instance,
SHARP [20] implements in-network aggregation based on a

dedicated Mellanox’s SiwtchIB-2 ASIC. iSwitch [21] tackles
reinforcement learning and moves the gradient aggregation to
FPGA-based programmable switches. PANAMA [55] designs
an in-network hardware accelerator based on FPGA and
presents a load-balancing protocol for in-network aggregation.
As another option, P4-based programmable switches [56]
attract a lot of attention. SwitchML [7] performs the
in-network aggregation in a rack-scale network and offloads
gradient aggregation of all workers to the top-of-rack (ToR)
switches. ATP [5] considers a two-layer topology, and the gra-
dients can be aggregated either on near-worker ToR switches
or near-PS ToR switches. The authors in [57] consider the
problem of how to place programmable switches in the net-
work to minimize network overload.

However, these works mainly focus on efficiently realizing
the aggregation operations in programmable switches, ignor-
ing the impact of gradient routing selection. In fact, due to the
constraint of switch processing capacity, the gradient routing
selection is critical to the efficiency of in-network aggregation.
Therefore, this paper design GRID to study the problem of
gradient routing with in-network aggregation.

III. MOTIVATION AND OVERVIEW

This section first gives an example to illustrate the pros and
cons of state-of-the-art solutions, which motivate our study.
Then we present the overview and workflow of GRID.

A. A Motivating Example

Consider a distributed training task containing 1 PS and
8 workers. Each link has a bandwidth of 3 Gbps. Note that,
in practice, the ingress bandwidth of the PS is often larger
than that of workers to avoid the communication bottleneck,
so we set the ingress bandwidth of the PS to 9 Gbps. The
processing capacity of programmable switches is 9 Gbps.

Since the PS needs to wait for gradients of all workers to
perform global aggregation, we take the minimum gradient
sending rate as the critical metric, and the results are shown
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in Fig. 1. The circle represents the PS. The gray squares and
blue rectangles represent workers W1-W8 and programmable
switches S1-S3, respectively. We use load/capacity to denote
the workload ratio and capacity for programmable switches
and links. The solid arrows represent the aggregated gradients,
and the dotted arrows represent the non-aggregated gradients
sent by workers.

We first consider the Geryon scheme [12], which is a
classical flow scheduling scheme in distributed training in
Fig. 1(a). It schedules the gradients through different paths
according to resource constraints to avoid network congestion.
In this case, Geryon schedules the gradient of W4 through the
path W4->S1->S2->S3->PS to avoid congestion in link L1.
Accordingly, the gradients of workers W1-W3 are scheduled
through the paths W1->S1->S3->PS, W2->S1->S3->PS and
W3->S1->S3->PS, respectively. Due to bandwidth constraints
of links L1 and L3, workers W1-W6 will send the gradients
with the minimum gradient sending rate of 1 Gbps.

We then consider a state-of-the-art method with in-network
aggregation, named ATP [5]. In ATP, each worker chooses
the nearest programmable switches for in-network aggregation
(i.e., S1 aggregates W1, W2, W3 and W4. S2 aggregates
W5 and W6. S3 aggregates W7 and W8). If the processing
capacity of the programmable switch is exhausted, it will
directly transfer the gradients to the PS. In this case, since the
processing capacity of S1 is 9 Gbps, W1-W4 can send gradi-
ents with the speed of 9/4=2.25 Gbps. Moreover, W1-W4 can
send gradients with the additional speed of 0.75/4=0.18 Gbps
to the PS, since link L1 still has 3-2.25=0.75 Gbps available
bandwidth. These gradients will be aggregated by S3 with
available processing capacity. As a result, the minimum gra-
dient sending rate is 2.43 Gbps.

B. Our Intuition

From the above example, we observe that both solutions
of accelerating distributed learning have advantages and dis-
advantages. Geryon routes the packets without in-network
aggregation, therefore, the gradient sending rates of workers
are limited by the ingress bandwidth of the PS. ATP adopts
in-network aggregation, while routing the packets through the
default paths to the PS. As a result, the gradient sending
rates of workers W1-W4 are limited by programmable switch
S1. A question immediately following the above discussion is
that how to achieve efficient in-network aggregation through
reasonable gradient routing under the resource constraints of
both programmable switches and PS?

In Fig. 1(b), we notice that, although S1 can not aggregate
gradients of W1-W4 with the speed of 3 Gbps, S2 has available
processing capacity for aggregating. Therefore, as shown in
Fig. 1(c), we select S2 to aggregate the gradients of W4 and
route these gradients through the path W4->S1->S2. This way,
all the workers can achieve the gradient sending rate of 3 Gbps.
This scheme improves the minimum gradient sending rates by
200% and 23.5%, compared with Geryon and ATP, respec-
tively. The reason for performance improvement is that, with
heterogenous switch workloads, the fixed routing scheme of
ATP will suffer the problem of load imbalancing. However,

Fig. 2. System overview of GRID. GRID is composed of two parts. The
control plane is responsible for determining the gradient routing policy. The
data plane consists of workers, programmable switches and the PS, which is
responsible for performing gradient routing with in-network aggregation.

our proposed scheme route workers’ gradients to appropriate
programmable switches according to their processing capaci-
ties. Motivated by this example, we design a gradient routing
with an in-network aggregation framework called GRID. Note
that, this example shows the performance gains for simplified
distributed model training, further experimental results show
that GRID can improve the gradient sending rate by 111.3%
and 40.8%, compared with Geryon and ATP, respectively.

C. GRID Overview

As shown in Fig. 2, GRID consists of the control and
data planes. The control plane leverages the collected network
resource information to compute the gradient routing policy,
i.e., to which programmable switches (or the PS) each worker
should send its gradient and the corresponding gradient send-
ing rates. The data plane consists of workers, programmable
switches and the PS. Specifically, workers are responsible for
gradient chunking. Programmable switches perform gradient
aggregation and rate synchronization to realize the gradient
routing with in-network aggregation. At last, the PS performs
global aggregation.

The core of GRID is to determine the gradient routing
policy, which will be introduced in Section IV. For the data
plane, we can implement gradient routing and aggregation
based on existing solutions [5]. Therefore, we present the
workflow in Section III-D and illustrate the detailed design of
gradient aggregation and rate synchronization in Section V.

D. Workflow of GRID

Fig. 2 briefly illustrates the GRID workflow, which mainly
consists of 5 steps.

1) Policy calculation: The network controller calculates
the gradient routing policy and publishes the policy
to workers and programmable switches. Note that, the
gradient routing policy is published only once, and the
data plane will iteratively execute the following 4 steps
in the DT task.

2) Gradient chunking: Since the switch memory size is
usually smaller than the gradient size, existing works [5],
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TABLE I
TABLE OF NOTATIONS

[7] perform aggregation in switch with the granularity
of gradient fragment. Specifically, each worker splits its
gradient into a set of gradient fragments, each of which
can be identified by the tuple of <node id, fragment id>.
The node id indicates which programmable switch or the
PS will aggregate the gradient fragment. The fragment
id is the index of the fragment. Each switch organizes
its memory as an array of memory units, each of which
can aggregate one fragment at a time.

3) Gradient aggregation: Each programmable switch main-
tains an identity id. On receiving a gradient fragment,
the programmable switch compares the fragment’s node
id with its id. If they match, the programmable switch
will perform gradient aggregation. Otherwise, the pro-
grammable switch will directly forward the fragment
according to the flow table and perform rate synchro-
nization.

4) Rate synchronization: Once a hash collision happens,
the programmable switch will send a control packet to
inform the corresponding worker adjusting the size of
sending window.

5) Global aggregation: The PS collects all gradient frag-
ments (aggregated by programmable switches and
directly sent from workers) and performs aggregation.

IV. GRID CONTROL PLANE DESIGN

Determining gradient routing policy is the key step in the
control plane of GRID. To achieve efficient in-network aggre-
gation, we first formulate the problem of Gradient Routing
with In-network Aggregation (GRIA). Then we propose a
randomized rounding based approximation algorithm named
R-GRIA. At last, we analyze the approximation performance
of R-GRIA.

A. Network Model

Parameter server architecture. A parameter server archi-
tecture consists of the parameter server (PS) α and a set

of workers N =
{
n1, n2, . . . , n|N |

}
. Workers compute the

gradients locally and send these gradients to the PS with the
rate of rα

n . The ingress bandwidth of the PS α is denoted
by Bα. Note that, our algorithm can be easily extended to
architectures with multiple PSs, since the partitions of each
PS are independent.
Programmable network. We consider a cluster (e.g., data-
center) containing four elements: a compute node set, a pro-
grammable switch set, a link set and a network controller.

1) The workers and the PS are hosted on the compute nodes
for gradients calculation and global aggregation.

2) The programmable switches are responsible for forward-
ing and gradient aggregation. Let S =

{
s1, s2, . . . , s|S|

}
denote the programmable switch set. Each pro-
grammable switch s has a limited processing capacity
Cs.

3) The compute nodes and the programmable switches are
connected via a set of links. Since the network topology
is stable in datacenters and elements are connected with
high bandwidth links, we assume the link bandwidth is
sufficient.

4) The network controller can manage the whole network,
e.g., routing the gradients of the workers.

B. Problem Formulation

This section gives the problem formulation of the Gradient
Routing with In-network Aggregation (GRIA) problem in
clusters. Supposing that the workers forward the gradients
to the PS, some of the gradients are forwarded and aggre-
gated in-network by programmable switches. This routing
scheme can be split into two phases: 1) workers’ gradients are
forwarded to programmable and 2) programmable switches
perform aggregation and forward the aggregated gradients
to the PS. In the following, we use aggregation nodes to
represent programmable switches and the PS, since they all
have gradient aggregation capabilities. For each worker n ∈
N , we should determine the aggregation node. We use xs

n ∈
{0, 1} to represent the gradient of the worker n is aggregated
by the programmable switch s or not, and xα

n ∈ {0, 1} to
denote whether the gradient is aggregated by the PS, or not.
We use rα

n and rs
n to denote the sending rates of worker n to

the PS α and the programmable switch s, respectively. Once a
programmable switch s performs aggregation, the result should
be sent to the PS α. Let ys represent the sending rate of the
programmable switch s to the PS, if it performs the in-network
aggregation. We illustrate the following constraints of the
GRIA problem:

1) Aggregation Constraint: Considering the number of pro-
grammable switches in the cluster is limited, routing
gradients through multiple programmable switches will
cause longer routing paths and higher bandwidth con-
sumption. Similar to [5], we assume that each gradient
will be aggregated in-network once at most to balance
the complexity and the performance of the GRIA prob-
lem, we have

∑
s∈S∪{α} xs

n = 1,∀n ∈ N .
2) Sending Rate Constraint: For each worker n ∈ N , its

sending rate to the aggregation node s can’t exceed the
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maximum sending rate T (i.e., the ingress bandwidth of
the PS), that is rs

n ≤ xs
n · T, ∀n ∈ N, s ∈ S ∪ {α}.

3) Aggregation Node Constraint: For each worker n ∈
N , its sending rate can’t exceed that of corresponding
programmable switches, if some workers choose it as the
aggregation node, which means rs

n ≤ ys,∀n ∈ N, s ∈
S.

4) Processing Capacity Constraint: Each programmable
switch can aggregate gradient with a limited processing
rate, which is

∑
n∈N rs

n ≤ Cs,∀s ∈ S.
5) Bandwidth Constraint: The forwarding rate can’t exceed

the ingress bandwidth of the PS α. There are two kinds
of flows. For each worker n ∈ N , if its aggregation node
is the PS, its flow consumes the ingress bandwidth of the
PS by rα

n . Otherwise, worker n’s gradient is aggregated
by the programmable switch s, and only one aggregated
flow will be sent to the PS. Therefore, it only consumes
the ingress bandwidth of the PS by ys. The bandwidth
constraint can be represented as

∑
n∈N rα

n +
∑

s∈S ys ≤
Bα.

With these constraints, the problem can be formulated as
follows:

max λ

S.t.



∑
s∈S∪{α} xs

n = 1, ∀n ∈ N

rs
n ≤ xs

n · T, ∀n ∈ N, s ∈ S ∪ {α}
rs
n ≤ ys, ∀n ∈ N, s ∈ S

λ ≤
∑

s∈S∪{α} rs
n, ∀n ∈ N∑

n∈N rs
n ≤ Cs, ∀s ∈ S∑

n∈N rα
n +

∑
s∈S ys ≤ Bα

xs
n ∈ {0, 1}, ∀n ∈ N, s ∈ S ∪ {α}

rs
n ≥ 0, ∀n ∈ N, s ∈ S ∪ {α}

ys ≥ 0, ∀s ∈ S

(1)

The first set of equations denotes the aggregation constraint.
The second set of inequalities represents the sending rate
constraint. The third set of inequalities means the aggregation
node constraint. We define λ as the minimum sending rate
among the workers and the fourth set of inequalities calculates
the λ. The fifth set of inequalities denotes the processing
capacity constraint. The sixth inequality represents the band-
width constraint. Our goal is to maximize the minimum
sending rate of workers.

C. Algorithm Design

In this section, we propose a randomized rounding based
algorithm for the GRIA problem, called R-GRIA. Specifically,
R-GRIA routes the gradients via two major steps: 1) Relaxing
the constraints of GRIA for computing the optimal solutions;
2) Determining the in-network aggregation scheme, including
calculating the aggregation nodes and gradient sending rates
of each worker.

In the first step, we relax Eq. (1) by replacing xs
n ∈

{0, 1} with xs
n ∈ [0, 1]. Then, we can solve it with a linear

program solver (e.g., PULP [58]) and the optimal solutions

Algorithm 1 R-GRIA: Randomized Rounding Algorithm for
GRIA

1: Step 1: Solving the Relaxed Problem
2: Construct a linear programming LP by replacing with

xs
n ∈ [0, 1].

3: Derive the optimal solutions {x̃s
n, r̃s

n, ỹs}.
4: Step 2: Determining the In-network Aggregation

Scheme
5: for each worker n ∈ N do
6: Choose the programmable switch or PS s ∈ S∪{α} as

the aggregation node with the probability r̃s
n∑

s∈S∪{α} r̃s
n

and set x̂s
n = 1.

7: Let sn denote the aggregation node of worker n.
8: Set the gradient sending rate to rsn

n =
∑

s∈S∪{α} r̃s
n.

9: end for
10: Define S′ = {s|s ∈ S,

∑
n∈N

x̂s
n > 0}.

11: for each programmable switch s ∈ S′ do
12: Set the gradient sending rate to ŷs = max{rsn

n , n ∈ N}
13: end for
14: Set λ = min{rsn

n , n ∈ N}.

are denoted as {x̃s
n, r̃s

n, ỹs}. In the second step, we select the
aggregation node based on the optimal solutions. Specifically,
for each worker n, the algorithm chooses the aggregation
node s ∈ S ∪ {α} with the probability r̃s

n∑
s∈S∪{α} r̃s

n
. The

aggregation node of worker n is denoted as sn. After all
the workers have selected the aggregation nodes, we define
S′ = {s|s ∈ S,

∑
n∈N

x̂s
n > 0} to denote the programmable

switches, which perform in-network aggregation. We set the
gradient sending rate of worker n ∈ N to rsn

n =
∑

n∈S∪{α} r̃s
n

and that of programmable switch s ∈ S′ toŷs = max{rsn
n , n ∈

N}, respectively. As a result, the value of λ is set to λ =
min{rsn

n , n ∈ N}. The algorithm is summarized in Alg. 1.

D. Performance Analysis

Theorem 1: R-GRIA can guarantee that each worker selects
one aggregation node. (i.e., R-GRIA guarantees the Aggrega-
tion Constraint.)

Proof: In line 6 of the Alg. 1, R-GRIA only chooses
one place with the probability r̃s

n∑
n∈S∪{α} r̃s

n
as the aggregation

node. Thus, the gradients are aggregated on one aggregation
node. □

Theorem 2: R-GRIA guarantees that for each worker, its
sending rate won’t exceed the maximum sending rate T .

Proof: According to Eq. (1), we can know that r̃s
n ≤

x̃s
n · T, ∀n ∈ N, s ∈ S ∪ {α} and

∑
s∈S∪{α} x̃s

n ≤ 1,∀n ∈ N .
Combining these two inequalities, we have:

rsn
n =

∑
n∈S∪{α}

r̃s
n ≤

∑
n∈S∪{α}

x̃s
n · T ≤ T (2)

As a result, we guarantee the Sending Rate Constraint. □
Theorem 3: R-GRIA guarantees that for each worker, its

sending rate won’t exceed that of its aggregation node.
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Proof: In line 11 of Alg. 1, R-GRIA sets ŷs =
max{rsn

n , n ∈ N} to ensure the gradient sending rate of
programmable switches won’t lower than that of workers. □

Lemma 4: Chernoff Bound: Given n independent vari-
ables: y1, y2, . . . , yn,∀yi ∈ [0, 1]. Let τ = E [

∑n
i=1 yi]. Then,

Pr [
∑n

i=1 yi ≥ (1 + ϱ)τ ] ≤ e
−ϱ2τ
2+ϱ , where ϱ is an arbitrary

positive value.
Theorem 5: R-GRIA will not exceed the Processing Capac-

ity Constraint by an approximation factor of O(log |S|). Under
the proper assumption, the bound can all be tightened to 2.

Proof: We first prove that for each worker n ∈ N and
aggregation node s ∈ S ∪ {α}, we have E [r̂s

n] = r̃s
n. Since

we choose the aggregation node sn for worker n with the
probability of r̃s

n∑
n∈S∪{α} r̃s

n
, and set the gradient sending rate

of worker n as r̂s
n =

∑
n∈S∪{α} r̃s

n. The expected value of r̂s
n

is:

E [r̂s
n] =

r̃s
n∑

n∈S∪{α} r̃s
n

·
∑

n∈S∪{α}

r̃s
n = r̃s

n (3)

Then we define δs =
∑

n∈N

r̂s
n as the processing throughput

of the programmable switch s. Since each worker n selects the
programmable switch s as the aggregation node independently,
we have E [δs] =

∑
n∈N r̃s

n. By the definition of δs, we can
get the expected computing workload of each programmable
switch s ∈ S:

E [δs] =
∑

n∈N r̃s
n ≤ Cs (4)

Let Cmin denote the minimum processing capacity among
the programmable switches. We then define a constant value
ν = Cmin

N ·T to normalize the expected computing workload.
Combining Eq. (4) and the definition of ν, we have:{

δs·ν
Cs

∈ [0, 1]

E
[

δs·ν
Cs

]
≤ ν

(5)

By applying Lemma 4, we have:

Pr
[
δs · ν
Cs

≥ (1 + ϱ) · ν
]
≤ e

−ϱ2ν
2+ϱ

⇒ Pr
[

δs

Cs
≥ (1 + ϱ)

]
≤ e

−ϱ2ν
2+ϱ (6)

where ϱ is an arbitrary positive value.
We want to find ϱ for which the probability upper bound

above becomes very small. Specifically, we assume that:

Pr
[

δs

Cs
≥ (1 + ϱ)

]
≤ e

−ϱ2ν
2+ϱ ≤ 1

|S|
(7)

which means that the upper bound approaches quickly to zero
as the network grows. By solving Eq. (7), we have:

ϱ ≥
log |S|+

√
log2 |S|+ 8ν log |S|

2ν
, (|S| ≥ 2)

⇒ ϱ ≥ log |S|
ν

+ 2, (|S| ≥ 2) (8)

In practice, the processing capacity of a programmable
switch can achieve up to 3.2Tbps [52], a PS architecture con-
tains 8-36 workers in general [59], and we set |N | = 36 here.

In the current datacenter, the ingress bandwidth of the PS can
achieve up to 100 Gbps [60]. Under this setting, ν = 320000

35·100 ≈
91.43. We assume the number of programmable switches in a
datacenter is |S| = 50, so 3 · log |S| ≈ 5.09. Combining these
assumptions, we can obtain that ν ≥ 3 · log |S|. As a result,
we have:

ϱ ≥
log |S|+

√
log2 |S|+ 8ν log |S|

2ν

⇒ ϱ ≥
log |S|+

√
(2ν − log |S|)2 + 12ν log |S| − 4ν2

2ν

⇒ ϱ ≥
log |S|+

√
(2ν − log |S|)2
2ν

⇒ ϱ ≥ 1 (9)

Thus, the approximate factor of the Processing Capacity
Constraint is (ϱ + 1) = log|S|

ν + 3 = O(log |S|). Under the
proper assumption (i.e., ν ≥ 3 · log |S|), the bound can be
tightened to ϱ + 1 = 2. □

Theorem 6: R-GRIA will not exceed the Bandwidth Con-
straint by an approximate factor of O(log |N · S|). Under the
proper assumption, the bound can be tightened to 4.

Proof: According to the bandwidth constraint, for the
ingress link of the PS α, there are two kinds of flows going
through: the flows from the workers and the flows from the
programmable switches. We define Bα,1 =

∑
n∈N

r̂α
n as the

bandwidth usage of the first set of flows and Bα,2 =
∑
s∈S

ŷs as

the bandwidth usage of the second set of flows, respectively.
The bandwidth usage of the PS ingress link can be represented
as Bα,1 + Bα,2 ≤ Bα.

We first consider the bandwidth usage of the first flow set,
which can be calculated as

∑
n∈N

r̂α
n = Bα,1. Let variable σα

n =

r̂α
n represent the gradient sending rate of worker n. Since the

worker n can send gradient to the PS, if and only if it selects
the PS as the aggregation node, we have:

E [σα
n ] =

∑
s∈S∪{α}

r̃s
n ·

r̃α
n∑

s∈S∪{α}
r̃s
n

= r̃α
n (10)

Thus, the expected bandwidth consumption of the first flow
set is:

E

[∑
n∈N

σα
n

]
=

∑
n∈N

E [σα
n ]

=
∑
n∈N

r̃α
n (11)

Using similar methods as in Theorem 5, we can prove that
the bandwidth usage of the first set of flows won’t be violated
by an approximation factor of O(log |N |), which means∑

n∈N

r̂α
n ≤ O(log |N |) ·Bα,1 (12)

We next consider the bandwidth usage of the second flow
set, which can be calculated as

∑
s∈S ŷs = Bα,2. By observing

the optimal results of LP in Alg. 1, we can assume that all
the workers with the same aggregation node sn have the same
sending rates. As a result, we have ỹsn

= r̃sn
n ,∀n ∈ N . We use

n′ to denote the worker with the largest sending rate to the
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programmable switch s. The expected bandwidth consume by
the programmable switch s is

E [ŷs] = E [r̂s
n′ ] = r̃s

n′ = ỹs (13)

According to Eq. (13), we can calculate the expected
bandwidth consume of the second set of flows as:

E

[∑
s∈S

ŷs

]
=

∑
s∈S

E [ŷs]

=
∑
n∈N

ỹs (14)

Therefore, we can prove that the bandwidth usage of the
second set of flows won’t be violated by an approximation of
O(log |S|): ∑

s∈S

ŷs ≤ O(log |S|) ·Bα,2 (15)

Combining the Eq. (12) and the Eq. (15), the total band-
width violation factor won’t exceed:

O(log |N |) ·Bα,1 + O(log |S|) ·Bα,2

Bα

≤ O(log |N |+ log |S|) = O(log |N · S|) (16)

Besides, similar to Theorem 5, we can prove that under
the assumption of Bα,1 ≥ 3 · log |N | and Bα,2 ≥ 3 · log |S|,
the approximation factor of the Bandwidth Constraint can be
tightened to 4. □

Theorem 7: After rounding, the minimum sending rate of
workers will equal the value in the relaxed LP . (i.e., we guar-
antee that λ is the optimal result.)

Proof: In line 12 of the Alg. 1, we set λ = min{rsn
n , n ∈

N}, where rsn
n =

∑
s∈S∪{α} r̃s

n. We define λ̃ as the optimal
result in the LP . By observing the LP in Alg. 1, we have

λ̃ = min

 ∑
s∈S∪{α}

r̃s
n, n ∈ N


= min{rsn

n , n ∈ N} = λ (17)

Eq. (17) means that the R-GRIA algorithm can guarantee
that the value of λ will equal that in the fractional solution
after randomized rounding. □

V. GRID DATA PLANE DESIGN

Although the GRID controller determines the gradient
routing policy, there are still two issues when implementing
in-network aggregation for each programmable switch. The
first issue is how programmable switches determine which
gradients are responsible for aggregating when receiving gra-
dients from different workers. The second issue is that when
gradient fragments arrive at switches asynchronously, how
does the programmable switch synchronize worker sending
rates so that in-network aggregation throughput remains high?
To address both issues, this section describes the detailed
design of gradient aggregation and rate synchronization.

A. Gradient Aggregation

When a programmable switch needs to aggregate a gradient
fragment, it hashes the fragment into a memory unit according
to the fragment id. Specifically, supposing that the number of
memory units is M , the switch will compute Hash(<fragment
id>)%M to allocate the gradient fragment. The switch records
the fragment id and the aggregation count. If the corresponding
memory unit is empty, it will store the value of the gradient
fragment, and the switch sets the aggregation count to 1.
Otherwise, it compares the fragment id with its record. If the
fragment id is not matched, we say a collision happens.
Since the corresponding memory unit is aggregating another
gradient fragment, the switch drops the incoming fragment
and performs rate synchronization. If the fragment id is
matched, the switch accumulates the value of the incoming
fragment into the stored values and increments the aggregation
count. Once the programmable switch finishes the gradient
fragment’s aggregation (i.e., the number of aggregation equals
the aggregation number of the routing policy), it will send this
fragment to the PS, releasing the corresponding memory unit
for aggregating the following gradient fragments.

B. Rate Synchronization

Once a collision happens, the programmable switch will
send a control packet to inform the corresponding worker to
adjust the gradient sending rate. The reason for collision is
that the gradient fragment with the larger fragment id arrives
at the programmable switch, while the corresponding memory
unit doesn’t complete the aggregation of the gradient fragment
with the smaller fragment id. Therefore, the programmable
switch turns down the gradient sending rate of the worker
with the larger fragment id to avoid the asynchronous arrival
of gradient fragments. Like TCP, the programmable switches
use ECN marks as the signal of control packets. Workers
use sending window size to control gradient sending rates.
Each worker applies additive increase multiplicative decrease
to adjust its window size in response to aggregated gradients
and control packets [5]. At the begining, workers maintain
the same window size. When workers receive the aggregated
packets from the PS, they increase the window size by one
MTU until it reaches a threshold. On receiving a control
packet, the worker halves the window size and updates the
threshold of the updated window to turn down the gradient
sending rates. The worker will resend the gradient packet with
the same fragment id as the control packet to continue the
aggregation.

VI. PERFORMANCE EVALUATION

In this section, we compare GRID with state-of-the-art
solutions. We first give the metrics and benchmarks for
performance comparison (Section VI-A). Then, we construct
a small-scale testbed with Wedge100BF-32x programmable
switches [52] to test the efficiency of GRID (Section VI-B).
Finally, to complement the small-scale testbed experiments,
we perform simulations to show the theoretical performance
of GRID in large-scale scenarios (Section VI-C).
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Fig. 3. Topology of the testbed consisting of 1 PS, 8 workers (W1-W8)
and 3 programmable switches (S1-S3). All the components are connected
via 100 Gbps links.

A. Performance Metrics and Benchmarks

Metrics. We adopt the following performance metrics for
performance comparison: (1) the training throughput; (2) the
gradient sending rate; (3) the per-iteration time; (4) the com-
munication time per iteration; (5) the test accuracy; (6) the
aggregation rate of programmable switches; (7) the aggrega-
tion rate of the PS.

During a testbed run, we measure the number of processed
samples (e.g., images) per second as the training throughput.
We use iftop [61] to monitor the egress bandwidth usage of
each worker as the gradient sending rate. Moreover, we record
the time between two consecutive iterations as the per-iteration
time. In each iteration, we measure the duration starting from
the time a worker starts sending a gradient till the time that
worker receives the aggregated gradient as the comunica-
tion time per iteration. Besides, we measure the proportion
between the amount of the data correctly predicted by the
model to that of all data in the test set as the test accuracy.

During a simulation run, we measure the total amount of
gradients aggregated by switches per second as the aggrega-
tion rate of programmable switches. We measure the ingress
bandwidth load of the PS, as the aggregation rate of the PS.
Benchmarks. We compare GRID with three benchmarks. The
first benchmark is a communication scheduling scheme with-
out considering in-network aggregation, called Geryon [12].
Geryon selects the shortest path to the PS for each gradient
under the resource constraints. The second one is ATP [5],
which performs in-network aggregation at multiple racks of
programmable switches. Each worker sends the gradient to
the PS via pre-defined routing paths, where the gradient is
aggregated in the first encountered aggregation node with
available processing capacity. The last one is an in-network
aggregation framework called SwitchML [7], which minimizes
the communication overheads at each rack. For fair evaluation,
we further accelerate the training of SwitchML by sending the
aggregated gradients of the programmable switch to the PS for
global aggregation.

B. Testbed Evaluation

Settings. We use 9 servers and 3 Wedge100BF-32x pro-
grammable switches [52] to build the testbed. The topology
of the testbed is shown in Fig. 3. Specifically, each server

Fig. 4. Training throughput vs. models.

Fig. 5. Gradient sending rate vs. no. of workers.

Fig. 6. Communication time vs. no. of workers.

has one NVIDIA GeForce RTX 3090, a 22-core Intel Xeon
6152 processor and a Mellanox ConnectX-6 100G dual-port
NIC. All the servers run Ubuntu 18.04 with CUDA 11.6.
The NIC driver of all servers is Mellanox driver OFED 5.5-
1.0.3.2. All programmable switches feature Intel Tofino chip
with Software Development Environment (SDE) 9.7.0 [62].
Moreover, these servers and programmable switches are con-
nected by 100 Gbps links as shown in Fig. 3.

Similar to [5], each server runs PyTorch [63] to perform
distributed training tasks. For the gradient routing policies,
we pre-calculate the routing scheme of our algorithm with
PuLP [58] in the PS. After that, the PS publishes the routing
policies to programmable switches and workers. Specifically,
for each switch, the PS can connect it with the Secure Shell
(SSH) protocol and publishes a unique id and a forwarding
table using the Barefoot Runtime Interface (BRI). For each
worker, the PS publishes the id of its aggregation node using
the DistributedDataParallel module provided by Pytorch. We
implement in-network aggregation in programmable switches
by writing the P4-16 program for the Tofino Native Archi-
tecture (TNA). The programmable switches can aggregate
64 elements per gradient packet using one switch pipeline.
We implement routing and aggregation logic in multiple stages
of the ingress pipeline and packet control logic in the egress
pipeline.
Overall performance comparision. In this set of eval-
uations, we run several popular models: AlexNet [64],
Inception-V3 [65], ResNet50 [1], VGG16 [66], BERT [2] and
LSTM [67], to evaluate the training throughput performance.
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Fig. 7. Per-iteration time vs. no. of workers.

Fig. 8. Training throughput vs. no. of workers.

We train AlexNet, Inception-V3, ResNet50 and VGG16 on
Cifar-100 dataset [68] and BERT and LSTM on wikitext-
2 [69] dataset. The batch size is set as 64 for all models.
As shown in Fig. 3, the network topology consists of 8 workers
and 1 PS, and overall performance results are shown in Fig. 4.
We can see that GRID obtains the highest training throughput
among the four algorithms. For example, GRID achieves
the throughput of 267 images/s on average when training
ResNet50, while ATP, SwitchML and Geryon obtain the
throughputs of 239 images/s, 228 images/s and 181 images/s,
respectively. When the model is VGG16, GRID increases the
throughput by 27.2%, 38.5% and 71.3% on average, compared
with ATP, SwitchML and Geryon, respectively. The reason
is that GRID decreases the communication time by selecting
optimal gradient routing policy to perform efficient in-network
aggregation. To save space, we only conduct a detailed per-
formance comparison of all solutions with Inception-V3 and
VGG16.
Performance comparision on per iteration training. In this
set of evaluations, we estimate the performance of per iteration
training. The network initially contains 2 workers (W1, W2),
1 programmable switch (S1) and the PS. Then we add 2 work-
ers (W3, W4) and 1 programmable switch (S2) to the network.
Similarly, we then add W5, W6 and S3 to the network. The
final topology contains 8 workers, 3 programmable switches
and the PS (i.e., Fig. 3). The evaluation results are shown in
Figs. 5-8. From Fig. 5, we can see that GRID can always
achieve the highest gradient sending rate as the number of
workers increases. For example, given 8 workers in Fig. 5(a),
the communication throughput of GRID, ATP, SwitchML and
Geryon are 16.9 Gbps, 12.0 Gbps, 11.4 Gbps and 8 Gbps,
respectively. GRID can increase the gradient sending rates by
40.8%, 48.2% and 111.3%, compared with ATP, SwitchML
and Geryon, respectively. The reason is that GRID can select
efficient routing paths and aggregation nodes by leveraging
the proposed R-GRIA algorithm. Fig. 6 shows that GRID
always has the least communication time in each iteration.
For example, when the number of workers is 8 in Fig. 6(b),
GRID decreases the communication time by 38.4%, 41.2%

and 60.1%, compared with ATP, SwitchML and Geryon,
respectively. The reason is that GRID has the highest gradient
sending rate (as described in Fig. 5), thus reducing the commu-
nication time. Fig. 7 shows the per-iteration time with different
numbers of workers. Note that per-iteration time consists of the
local training and communication time. Our method doesn’t
optimize the local training time but can co-exist with solutions
decreasing local training time if needed. We can see that, as the
number of workers increases, the per-iteration time increases
too, while GRID always obtains the least per-iteration time.
Given 8 workers in Fig. 7(b), the per-iteration times of GRID,
ATP, SwitchML and Geryon are 19.2s, 24.5s, 25.6s and 31.2s,
respectively. Thus, we can conclude that by decreasing the
communication time, GRID reduces the per-iteration time
by 21.6%, 25% and 38.5%, compared with ATP, SwitchML
and Geryon, respectively. Fig. 8 shows that as the number
of workers increases, GRID can always obtain the highest
training throughput. For example, given 8 workers in Fig. 8(b),
the training throughput of GRID is 17.4%, 25.5% and 52.7%
higher than that of ATP, SwitchML and Geryon, respectively.
The reason is that we have designed the R-GRIA algorithm
to select a better gradient routing scheme with in-network
aggregation, thereby increasing the gradient sending rate.
Performance comparison on end-to-end training. In this
set of evaluations, we run two end-to-end distributed training
tasks to evaluate the performance of training time and accu-
racy. Specifically, we set the number of training iterations of
Inception-V3 and VGG16 to 200 and 500, respectively. From
Figs. 9-10, we can see that GRID always takes the least time to
complete the same number of iterations compared with other
alternatives. Fig. 9 shows that, GRID takes the least time to
complete the distributed training task. Fig. 10 further indicates
that GRID can obtain the specified test accuracy with the least
time. For instance, in Fig. 10, when the mode is Inception-V3,
GRID takes 1830s to finish all the training iterations, while
ATP, SwitchML and Geryon take 2592s, 2666s and 3268s
to complete. Besides, GRID first achieves an accuracy of
0.7925 in 968s, while that time of ATP, SwitchML and Geryon
are 1568.16s, 1612.93s and 1977.14s, respectively. It means
that GRID can reach the target accuracy 1.61×, 1.66× and
2.04× faster than ATP, SwitchML and Geryon. The results
show that proper gradient routing with in-network aggregation
can significantly speed up the distributed model training.
Summary. From the above testbed evaluation results, we can
draw some conclusions. First, Fig. 4 shows that GRID can
improve the training throughput by about 30% on average
compared with other alternatives for distributed model train-
ing. Second, in Figs. 5-8, we can see that GRID reduces
per-iteration time by about 25% on average compared with
ATP, SwitchML and Geryon. At last, from Figs. 9-10,
we believe GRID can achieve similar test accuracy with other
alternatives, which takes more time to complete the training
than GRID.

C. Simulation Evaluation

Settings. Our simulations are implemented on a physi-
cal server equipped with an Intel Core i9-10900 processor
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Fig. 9. Training time vs. no. of iterations.

Fig. 10. Test accuracy vs. time.

and 64GB RAM. We adopt the linear programming solver
PuLP [58] to compute the routing policies. Note that, although
mininet [70] supports replacing switches with bmv2 [71]
software p4 switches, it faces a critical performance problem.
After testing, we found that, when the scale of topologies
increases to tens of hosts, the bandwidth of bmv2 switches
will degrade to several Mbps with high packet loss rates.
The experimental results of the work [72] also confirmed this
conclusion. Therefore, we didn’t choose to perform large-scale
simulations through bmv2 and mininet, but through running
the algorithm simulations.

We first obtain the gradient sending rates and aggregation
policy by running the algorithm R-GRIA. Combining the
gradient sending rate and aggregation policy, we can calculate
the gradient aggregation rate of programmable switches and
PS. Specifically, we accumulate the gradient sending rates of
workers, whose aggregation nodes are programmable switches
as the aggregation rate of programmable switches. Similarly,
we accumulate the gradient sending rate of programmable
switches and workers, which send gradients to the PS, as the
aggregation rate of the PS.

We select two practical topologies to verify the theoretical
performance of GRID’s routing algorithm. The first topol-
ogy is the classical fat-tree topology [24], which contains
80 switches (32 edge switches, 32 aggregation switches and
16 core switches) and 192 servers. The second topology is
a leaf-spine topology [25], which consists of 60 switches (30
spine switches and 30 leaf switches) and 500 servers. For both
topologies, each element is connected with 100 Gbps links.
The ingress bandwidth of the PS is set to 100 Gbps. Since the
Wedge100BF-32x programmable switches contain 32 ports,
each of which has a maximum bandwidth of 100 Gbps,
we randomly set the processing capacity of programmable
switches from 100 Gbps to 3.2 Tbps.

The simulations are performed under two scenarios. In the
first scenario, we set the ToR switches in the fat-tree topology
(leaf switches in the leaf-spine topology) as the programmable

Fig. 11. Gradient sending rate vs. no. of workers in (a).

Fig. 12. Gradient sending rate vs. no. of workers in (b).

Fig. 13. Aggregation rate of switches vs. no. of workers in (a).

Fig. 14. Aggregation rate of switches vs. no. of workers in (b).

switches, similar to ATP [5]. Since the current datacenters
deploy programmable switches as the ToR switches [5], [7],
we evaluate the performance of GRID in large-scale datacenter
programmable networks in this scenario, denoted by (a). In the
second scenario, we randomly select 20% of the switches
as programmable switches. Considering the popularity of
programmable switches [73], [74], [75], we think that in the
future programmable switches will be deployed throughout
the datacenter network, not just as the ToR switches. There-
fore, we evaluate the performance of GRID in general (pro-
grammable switches are not only deployed as ToR switches)
large-scale programmable networks in this scenario, denoted
by (b).
Comparison on gradient sending rate. This set of simu-
lations gives the gradient sending rates comparison among
these four algorithms and the results are shown in Figs. 11-
12. We can see that, as the number of workers increases, the
average gradient sending rate decreases, while GRID always
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Fig. 15. Aggregation rate of the ps vs. no. of workers in (a).

Fig. 16. Aggregation rate of the ps vs. no. of workers in (b).

obtains the highest gradient sending rate compared with other
alternatives. As shown in Fig. 11(a), given 40 workers, GRID
outperforms the gradient sending rate by 0.19×, 2× and 11×,
compared with ATP, SwitchML and Geryon. In scenario (a),
the number of workers per rack (6 in the fat-tree topology
and 16 in the leaf-spine topology) is determined. Due to the
fixed routing paths of ATP and SwitchML, each programmable
switch can only serve the workers in the same rack, resulting
in underutilization. As the number of workers increases, the
number of programmable switches increases so that the PS
will receive more aggregated gradients from the switches. As a
result, the ingress bandwidth of PS becomes the bottleneck of
the scenario, limiting the gradient sending rates of workers.
Since GRID decides the optimal aggregation nodes for work-
ers, it can perform efficient in-network aggregation with fewer
programmable switches than ATP and SwitchML, improving
the gradient sending rates of workers. In the fat-tree topology
in scenario (b), when the number of workers is 100, the
average communication throughputs of GRID, ATP, SwitchML
and Geryon are 23.5 Gbps, 10 Gbps, 8.9 Gbps and 1 Gbps,
respectively. GRID outperforms the gradient sending rate by
1.35×, 1.64× and 22.5× compared with ATP, SwitchML and
Geryon, respectively. The reason is that our algorithm selects
proper gradient aggregation nodes for workers to achieve
efficient in-network aggregation.
Comparison on gradient aggregation rate. This set of
simulations is conducted to illustrate the aggregation rate
performance of the programmable switches and the PS. The
results are shown in Figs. 13-16. Since Geryon doesn’t
perform in-network aggregation, we omit it in Figs. 13-
14. From Figs. 13-14 we can see that as the number of
workers increases, GRID can consistently achieve the highest
in-network aggregation throughput. Specifically, in Fig. 14(a),
given 100 workers, the throughput of in-network aggregation
of GRID, ATP and SwitchML are 465 Gbps, 148 Gbps and
178.45 Gbps, respectively. GRID improves the in-network
aggregation throughput by 214% and 161.2% compared with

ATP and SwitchML, respectively. Figs. 15-16 shows that
GRID can utilize almost all ingress bandwidths of the PS
for aggregation. For example, in Fig. 16(a), when the number
of workers is 40, the aggregation throughput of the PS of
SwitchML, GRID, ATP and Geryon are 81.6 Gbps, 86 Gbps,
95 Gbps and 100 Gbps, respectively. The reason is that, ATP
and SwitchML ignore the importance of gradient routing,
unable to utilize the aggregation capability of programmable
switches efficiently. In contrast, GRID can select the optimal
aggregation node for each worker to fully utilize the processing
capacities of the programmable switches and the PS. Note
that, in scenario (a), the ingress bandwidth of the PS is the
bottleneck, so the aggregation rates of the PS are always
100Gbps.
Summary. From these simulation results, we can draw some
conclusions. First, from Figs. 11-12 we can see that GRID
achieves the highest gradient sending rate, which means GRID
can speed up the distributed model training by performing
efficient in-network aggregation. Second, Figs. 13-16 show
that, by selecting the optimal aggregation nodes for workers,
GRID can obtain a high aggregation rate of programmable
switches and the PS.

VII. CONCLUSION

In this paper, we present a framework called Gradient
Routing with In-network Aggregation for Distributed Training
(GRID) to accelerate distributed model training in clusters.
In the control plane, we formulate the GRIA problem, and
propose an efficient randomized rounding based algorithm,
named R-GRIA, to solve the problem. We further analyze the
performance of R-GRIA. In the data plane, we design and
implement in-network aggregation to ensure correct execution
of routing policies in programmable switches. Extensive exper-
imental and simulation results show that GRID can achieve
high training throughput and speed up the distributed model
training.
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